nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.38 91-99
基于KPCA-ISOA-KELM的冷缝检测分类研究
基金项目(Foundation): 四川省科技成果转移转化示范项目(2023ZHCG0020)
邮箱(Email): wujy@scentralit.com;
DOI:
摘要:

针对现有的冷缝检测手段存在检测效率较低、对数据解析要求高、波形信息不能进一步深入挖掘等问题,提出了基于核主成分分析(Kernel Principal Component Analysis,KPCA)、改进海鸥优化算法(ImproveSeagulloptimizationalgorithm,ISOA)、核极限学习机(Kernel Extremel Learing Machine,KELM)相结合的冷缝检测分类方法(KPCA-ISOA-KELM)。首先,采用冲击弹性波法在隧道疑似冷缝区域中采集数据构成数据集,并利用KPCA对数据进行降维操作;然后,利用ISOA对KELM的参数进行优化;最后,利用含最优参数的KELM实现对检测数据分类。通过与KPCA-SOA-KELM、KPCA-FOA-KELM、KPCA-CNN-LSTM进行对比验证,结果表明,KPCA-ISOA-KELM模型对现场检测具有一定的指导意义,并且相较于其他3种模型,该模型能达到96.00%的准确率和0.9598的加权F1-score。

Abstract:

The cold joint detection classification method, named KPCA-ISOA-KELM, is proposed to address several existing issues in current cold joint detection techniques, such as low detection efficiency, high data parsing requirements, and limited exploitation of waveform information, which combines Kernel Principal Component Analysis(KPCA), Improved Seagull Optimization Algorithm(ISOA), and Kernel Extreme Learning Machine(KELM). Firstly, data sets are collected using the impact elastic wave method in suspected cold joint areas within tunnels, and KPCA is utilized to perform dimensionality reduction on the data. Then, ISOA is employed to optimize the parameters of KELM. Finally, the optimized KELM classifier is utilized to classify the detection data. Comparative validation is conducted against KPCA-SOA-KELM, KPCA-FOA-KELM, and KPCA-CNN-LSTM models. The results indicate that the KPCA-ISOA-KELM model provides valuable guidance for on-site detection and achieves a higher accuracy rate of 96.00% and a weighted F1-score of 0.9598 compared to the other three models.

参考文献

[1]满世浩,石广田,满开泉.铁路隧道二次衬砌施工冷缝成因及对策[J].铁道建筑,2022,62(7):92-96.

[2] DENG H S,FU H L,ZHAO Y B,et al.Using acoustic emission parameters to study damage and fracture characteristics of concrete with different pour intervals cold joints[J].Theoretical and Applied Fracture Mechanics,2022,122:103601.

[3]黄昊,吕小彬,李萌,等.风机混凝土扩展基础施工冷缝缺陷检测与评估技术[J].中国水利水电科学研究院学报,2013,11(3):232-235.

[4]李才华,赵志.风电机组混凝土基础强度及施工冷缝检测评估技术[J].武汉大学学报(工学版),2017,50(S1):364-368.

[5]吴佳晔,贾其松,陈霆,等.基于冲击弹性波的混凝土冷缝检测及评价方法[J].铁道建筑,2023,63(1):88-91.

[6] KARAMIZADEH S,ABDULLAH S M,MANAF A A,et al.An overview of principal component analysis[J].Journal of Signal and Information Processing,2013,4(3):173-175.

[7] LAJMI F,MHAMDI L,ABDELBAKI W,et al.Investigating machine learning and control theory approaches for process fault detection:a comparative study of KPCA and the observer-based method[J].Sensors,2023,23(15):6899.

[8] HUANG G B,ZHU Q Y,SIEW C K.Extreme learning machine:theory and applications[J].Neurocomputing,2006,70(1-3):489-501.

[9]武文栋,施保华,郑传良,等.基于KPCA-ISSA-KELM的光伏阵列故障诊断方法[J].智慧电力,2022,50(11):69-76.

[10]谢博,陈是扦,徐明坤,等.基于优化多核极限学习机的车轮多边形磨耗识别[J].力学学报,2022,54(7):1797-1806.

[11]杨锡运,关文渊,刘玉奇,等.基于粒子群优化的核极限学习机模型的风电功率区间预测方法[J].中国电机工程学报,2015,35(S1):146-153.

[12] DHIMAN G,KUMAR V.Seagull optimization algorithm:theory and its applications for large-scale industrial engineering problems[J].KnowledgeBased Systems,2019,165:169-196.

[13]李祥杰,孙志军,孟婥,等.基于改进海鸥优化算法的履带式拉挤机牵引装置控制研究[J].现代制造工程,2023(6):144-149.

[14] ZHAO W,ZHANG Z,WANG L.Manta ray foraging optimization:an effective bio-inspired optimizer for engineering applications[J].Engineering Applications of Artificial Intelligence,2020,87:103300.

[15] PAN W T.A new fruit fly optimization algorithm:taking the financial distress model as an example[J].Knowledge-Based Systems,2012,26:69-74.

[16]王登海,安玥馨,廖晨博,等.基于CNN-LSTM混合神经网络的光伏发电量预测方法研究[J].西安石油大学学报(自然科学版),2024,39(1):129-134.

基本信息:

DOI:

中图分类号:U455.91

引用信息:

[1]朱洪谷,吴佳晔.基于KPCA-ISOA-KELM的冷缝检测分类研究[J].四川轻化工大学学报(自然科学版),2025,38(02):91-99.

基金信息:

四川省科技成果转移转化示范项目(2023ZHCG0020)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文