8,748 | 271 | 60 |
下载次数 | 被引频次 | 阅读次数 |
关联规则挖掘是数据挖掘研究领域中的一个重要任务,旨在挖掘事务数据库中有意义的关联。随着大量数据不停的收集和存储,从数据库中挖掘关联规则显得越来越有必要性,关联规则挖掘的Apriori算法是数据库挖掘的最经典算法并得到广泛应用,在介绍关联规则挖掘和Apriori算法的基础上,发现Apriori算法存在着产生候选项目集效率低和频繁扫描数据等缺点。综述了Apriori算法的主要优化方法,并指出了Apriori算法在实际中的应用领域,提出了未来Apriori算法的研究方向和应用发展趋势。
Abstract:Mining association rules,designed to tap the fun associated which obtained the transaction database,is an important task of data mining research field.With the kept capture and storage of large amount of data,mining association rules from the database plays more and more important role,the Apriori algorithm of mining association rules is the most classic one in database mining algorithms and widely used.On the base of description of mining association rules and the Apriori algorithm.Apriori algorithm is found to have drawbacks:the rate of generating candidate item sets is low and frequently scan data,and so on.The main optimization methods of the Apriori algorithm are overviewed,and practical applications of the Apriori algorithm are pointed out,the research directions and application trends of the Apriori algorithm in the future are proposed.
[1]Agrawal R,Imielinski T,Swami A.Database mining:A performance perspective[J].IEEE Transactions onKnowledge and Data Engineering,1993,5(6):914-925.
[2]Agrawal R,Imielinski T,Swami A.Mining associationrules between sets of items in large database[J].InProc.ACMSIGMOD Intl.Conf.Management of Data,1993,1(1):207-216.
[3]范明,范宏建,译.数据挖掘导论[M].北京:人民邮电出版社,2006.
[4]陈安,陈宁,周龙骧,等.数据挖掘技术及其应用[M].北京:科学出版社,2006.
[5]范明,孟小峰,译.数据挖掘概念与技术[M].北京:机械工业出版社,2001.
[6]颜雪松,蔡之华.一种基于Apriori的高效关联规则挖掘算法的研究[J].计算机工程与应用,2002,10:209-211.
[7]胡吉明,鲜学丰.挖掘关联规则中Apriori算法的研究与改进[J].计算机技术与发展,2006,16(4):99-101.
[8]刘君强,孙晓莹,潘云鹤.关联规则挖掘技术研究的新进展[J].电子科技大学学报,2004,31(1):110-113.
[9]Ng R T,Han J.Efficient and Effective ClusteringMethods for Spatial Data Mining[J].In:Proc.of the18thIntl.Conf.on Very Large Data Bases,1994,1(1):144-155.
[10]Chen MS,Han J W,Yu P S.DataMining:An Over-viewfrom aDatabase Perspective[J].IEEE Transac-tions onKnowledge and Data Engineering,1996,8(6):866-883.
[11]Park J S,Chen M S,Yu P S.Using a hash-basedmethod with transaction trimming formining associa-tion rules[J].Knowledge and Data Engineering,IEEE Transactions,1997,9(5):813-825.
[12]崔立新,范森森,赵春喜.相联规则发现方法及算法[J].计算机学报,2000,23(2):216-220.
[13]赵春玲,宁红云.Apriori算法的改进及其在物流信息挖掘中的应用[J].天津理工大学学报,2007,23(1):30-33.
[14]姜红艳.Apriori关联算法在学生成绩中的应用[J].鞍山师范学院学报,2007,9(2):48-50.
[15]Toivonen H.Sampling Large Databases for Associa-tion Rules[C].Proceedings of the 22nd Internation-al Conference on Very Large Data-base[M].Bom-bay,India,1996.
[16]牛丽敏.Apriori算法分析与改进综述[J].桂林电子科技大学学报,2007,27(1):27-30.
[17]高振中,杨小劲.利用项编码方法改进apriori算法[J].计算机时代,2009(1):27-29.
[18]徐章艳,刘美玲,张师超,等.Apriori算法的三种优化方法[J].计算机工程与应用,2004,40(36):190-193.
[19]Jiawei Han,Micheline Kamber.Data Mining Conceptsand Techniques[M].Beijing:China Machine Press,2001.
[20]陈敏艳.基于矩阵方法优化Apriori算法[J].内蒙古科技与经济,2008,16(17):69-70.
[21]Chen F,Drezner Z,Ryan J K.Quantifying the Bull-whip Effectin a Simple Supply Chain:The Impact ofForecasting,Leadtime and Information[J].Manage-ment Science,2000,46(3):436-443.
[22]吴斌,肖刚,陆佳炜.基于关联规则挖掘领域的Apriori算法的优化研究.计算机工程与科学[J].2009,31(6):116-118.
[23]袁万莲,郑诚,翟明清.一种改进的Apriori算法[J].计算机技术与发展,2008,18(5):52-53.
[24]庄晓毅,张忠能.一种改进的关联规则挖掘算法[J].计算机工程,2004,30(14):128-129.
[25]李志勇.深入分析关联规则Apriori算法[J].现代计算机,2009(5):48-49.
[26]SayginY,Verykios V S,Clifton C.Using Unknowns toPrevent Discovery of Association Rules[J].ACMSIGMOD Record,2001,30(4):45-54.
基本信息:
DOI:
中图分类号:TP311.13
引用信息:
[1]赵洪英,蔡乐才,李先杰.关联规则挖掘的Apriori算法综述[J].四川理工学院学报(自然科学版),2011,24(01):66-70.
基金信息:
四川省科技厅支撑计划项目(2008FZ0109);; 四川省教育厅科技项目(2007ZL048)