87 | 0 | 22 |
下载次数 | 被引频次 | 阅读次数 |
埋地管道在实际情况中,受到多种荷载的作用,采用有限元方法(FEM)模拟土体和管道,需要建立大量的单元,存在费时费力、计算工作量大和建模困难等问题。利用弹性地基梁方法,将长输埋地管道简化为一系列弹性地基上的弹性梁。并考虑管道在工程实际中所承受到的轴向力、外力偶矩等情况,分别推导出管道在承受上述荷载下的挠曲线微分方程,得到挠度解析解,进而得到管道截面弯矩的表达式。根据已知监测数据,确定解中的待定系数,从而确定管道任意截面的弯矩,以便将理论解与有限元结果进行对比,并对管道表面的应力结果进行了相关计算和对比。结果表明,理论解得到的截面弯矩与有限元结果在管道中部吻合良好,相对误差处于0.1%~0.5%之间,管道整体的平均误差在3%~6%之间,应力的整体平均误差为6.6%。结果证明了理论解的有效性,该理论解的提出对于埋地管道的分析具有指导意义。
Abstract:Buried pipelines are subjected to a variety of loads in real situations, and the use of finite element method(FEM)to simulate soil and pipelines requires the creation of a large number of elements, which is timeconsuming, computationally intensive, and difficult to model. Using the elastic foundation beam method, the long-distance buried pipeline is simplified into a series of elastic beams on elastic foundations, and the axial force, torque and bending moment that the pipeline is subjected to in practice are considered. The differential equations of the deflection curve of the pipeline subjected to the above loads are derived respectively, and the analytical solution of the deflection is obtained, which leads to the expression of the bending moment of the pipeline cross-section. Based on the monitoring data, the unknown coefficients in the solution are determined.Therefore the theoretical solutions of the bending moment of any cross-section of the pipe can be compared with the FEM results. It shows that the cross-section bending moments obtained from the theoretical solution match well with the FEM results in the middle of the pipeline, relative error in the range of 0.1% ~ 0.5%. The average error of the pipeline as a whole is between 3% and 6%, and the overall average error of the stresses is 6.6%. The numerical results prove the validity of the theoretical solution, and the proposed theoretical solution is instructive for the analysis of buried pipelines
[1]程蕾.新时代中国能源安全分析及政策建议[J].中国能源,2018,40(2):10-15.
[2] DESTEK M A.Natural gas consumption and economic growth:panel evidence from OECD countries[J].Energy,2016,114:1007-1015.
[3]范秦楚,阮玉蛟,周军.碳达峰碳中和目标下国内天然气净化厂运行现状与展望[J].石油与天然气化工,2023,52(1):25-31,39.
[4]徐东.顶层设计和基层首创有机耦合下的产业发展战略研究——对中国石油LNG产业发展的几点思考[J].石油与天然气化工,2013,42(2):106-111.
[5]刘仕鳌,蒲红宇,刘书文,等.埋地管道应力分析方法[J].油气储运,2012,31(4):274-278.
[6]吴韶艳,文宝萍.解析法估测采空塌陷区埋地管道的变形及应力[J].油气田地面工程,2014,33(9):12-13.
[7]杨晓辉,赵子龙,李忱,等.采空区埋地管道沉降变形分析[J].太原科技大学学报,2016,37(2):134-139.
[8]李乔楚,庄波,李联合.岩溶塌陷区埋地管道的挠度和应力分析[J].焊管,2023,46(4):23-30.
[9]任建东,王文,董淼,等.开采沉陷区埋地管道变形及力学特征分析[J].中国安全科学学报,2020,30(10):82-89.
[10]朱彦鹏,赵忠忠.基于弹性地基梁法的沉陷区埋地管道应力变形分析[J].甘肃科学学报,2016,28(3):72-76.
[11]董国伟.基于弹性地基梁法的地下管线简化模型分析[J].陕西煤炭,2019,38(3):10-13,36.
[12]蔡建鹏,黄茂松,钱建固,等.基坑开挖对邻近地下管线影响分析的DCFEM法[J].地下空间与工程学报,2010,6(1):120-124.
[13]张陈蓉,蔡建鹏,黄茂松.基坑开挖对邻近地埋管线的影响分析[J].岩土工程学报,2010,32(S2):154-157.
[14] LIANG L J,XU C J,ZHU B T,et al.Theoretical method for an elastic infinite beam resting on a deformable foundation with a local subsidence[J].Computers and Geotechnics,2020,127:103740.
[15] LIU Q J,MA J J.Analytical model for beams on elastic foundations considering the coupling of horizontal and vertical displacements[J].Journal of Engineering Mechanics,2013,139(12):1757-1768.
[16] RAFFAELE C,GIUSEPPE D,ANGELO A,et al.Analytical solutions for piles’lateral deformations:the nonlinear stiffness case[J].International Journal of Mechanical Sciences,2022,229:1-17.
[17]姜峥.基坑开挖引起邻近管线变形的理论解析[J].地下空间与工程学报,2014,10(2):362-368.
[18]龙驭球.弹性地基梁的计算[M].北京:人民教育出版社,1981.
[19] STEPHEN P.Theory of elastic stability[M].2nd ed.New York:McGraw Hill,1961.
[20]帅健.管线力学[M].北京:科学出版社,2010.
[21] LEUNG A Y T.Dynamic buckling of columns by biaxial moments and uniform end torque[J].Journal of Sound&Vibration,2010,329(11):2218-2240.
[22] JOHN C M A,AE S F R,LORD C M A,et al.Strength of materials and structures[M].London:Butterworth-Heinemann,1999.
基本信息:
DOI:
中图分类号:TE973
引用信息:
[1]于昊,喻勇,李荣光等.基于弹性地基梁原理的埋地天然气管道内力分析[J].四川轻化工大学学报(自然科学版),2025,38(01):103-113.
基金信息:
长江科学院开放研究基金资助项目(CKWV20221016/KY)