175 | 0 | 23 |
下载次数 | 被引频次 | 阅读次数 |
2024-T351铝合金在航空航天领域服役过程中常面临低温环境下的冲击载荷作用。为了研究2024-T351铝合金在低温-高应变率耦合加载下的动态力学性能及其能量演化规律,利用MTS809拉扭试验机、分离式霍普金森拉杆和低温环境系统对2024-T351铝合金进行了宽应变率范围(10-3~103 s-1)和宽温度范围(-100~20℃)下的拉伸实验。同时运用扫描电子显微镜(SEM)对回收断口进行微观观察和分析。结果表明:在准静态加载下,2024-T351铝合金在不同的温度区间表现出不同程度的温度敏感性;在–100℃时材料的屈服强度较–60℃时提高了11.08%,其在–60℃时的屈服强度较–20℃时提高了3.67%,在–20℃时的屈服强度较20℃时提高了1.49%。在冲击加载下,2024-T351铝合金表现出温度-应变率耦合效应,即随着温度的不断降低,材料的应变率敏感性也随之降低。SEM结果显示在不同的应变率和温度下,材料呈现不同的断裂模式。同时从能量角度出发,2024-T351的动态断裂过程伴随着能量累积、耗散和释放,且耗散能随着温度的降低和应变率的增加而增大。
Abstract:2024-T351 aluminum alloy materials used in aerospace service are often exposed to impact loading in low-temperature environments. In order to investigate the dynamic mechanical properties and energy evolution law of 2024-T351 aluminum alloy under low-temperature and high strain rate coupled loading, tensile experiments are conducted on 2024-T351 aluminum alloy in a wide strain rate range(10-3~103 s-1) and a wide temperature range(-100~20 ℃) utilizing the MTS809 testing machine, the split Hopkinson tension bar and the low-temperature environmental system. At the same time, the recovered fractures are observed and analyzed by the scanning electron microscope(SEM). The results show that under quasi-static loading, the 2024-T351aluminum alloy exhibits different degrees of temperature sensitivity in different temperature zones. The yield strength of the material at-100 ℃ is increased by 11.08% compared with that at-60 ℃, and the yield strength of the material at-60 ℃ is increased by 3.67% compared with that at-20 ℃, and the yield strength of the material at-20 ℃ is increased by 1.49% compared with that at 20 ℃. Moreover, under impact loading, the 2024-T351aluminum alloy shows a temperature-strain rate coupling effect, in which the strain rate sensitivity of the material decreases with the decrease of temperature. The SEM results show that the material presents different fracture patterns at different strain rates and temperatures. Meanwhile, from the energy perspective, the dynamic fracture process of 2024-T351 is associated with energy accumulation, dissipation and release, and the dissipation energy increases with the decrease of temperature and the increase of strain rate.
[1]盖凌锋,朱志武.6005A铝合金的冲击动态本构模型及其有限元验证[J].四川轻化工大学学报(自然科学版),2023,36(5):1-9.
[2] KHAN A S,LIU H W.Variable strain rate sensitivity in an aluminum alloy:response and constitutive modeling[J].International Journal of Plasticity,2012,36:1-14.
[3] CHEN G,LU L P,REN C Z,et al.Temperature dependent negative to positive strain rate sensitivity and compression behavior for 2024-T351aluminum alloy[J].Journal of Alloys and Compounds,2018,765:569-585.
[4]王雷,李玉龙,索涛,等.航空常用铝合金动态拉伸力学性能探究[J].航空材料学报,2013,33(4):71-77.
[5] ZHANG D N,SHANGGUAN Q Q,XIE C J,et al.A modified Johnson-Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy[J].Journal of Alloys and Compounds,2015,619:186-194.
[6] JIA B,RUSINEK A,XIAO X K,et al.Simple shear behavior of 2024-T351 aluminum alloy over a wide range of strain rates and temperatures:experiments and constitutive modeling[J].International Journal of Impact Engineering,2021,156:103972.
[7] WANG Y G,JIANG Z X.Dynamic compressive behavior of selected aluminum alloy at low temperature[J].Materials Science and Engineering:A,2012,553:176-180.
[8] LEE W S,LIN C R.Deformation behavior and microstructural evolution of 7075-T6 aluminum alloy at cryogenic temperatures[J].Cryogenics,2016,79:26-34.
[9]何圳涛,刘文辉,陈宇强,等.低温环境下2519A铝合金动态力学性能及组织演化[J].材料热处理学报,2015,36(4):62-67.
[10] YU H P,LYU F,JIANG X,et al.Mechanical properties and microscopic mechanisms of 2219-T6 aluminum alloy under dynamic tension with cryogenic temperatures[J].Materials Science and Engineering:A,2024,891:145920.
[11] JIN Y Y,YU H P.Superior mechanical properties and microstructual evolution of 2195-T6 Al-Li alloys at a high strain rate[J].Materials Science and Engineering:A,2021,816:141314.
[12] DAVE M J,PANDYA T S,STODDARD D.Dynamic characterization of bio-composites under high strain rate compression loading with split Hopkinson pressure bar and digital image correlation technique[J].International Wood Products Journal,2018,9(3):115-121.
[13] GRUBER B,WEIΒENSTEINER I,KREMMER T,et al.Mechanism of low temperature deformation in aluminium alloys[J].Materials Science and Engineering:A,2020,795:139935.
[14] HASSAN M,WILLE K.Experimental impact analysis on ultra-high performance concrete(UHPC)for achieving stress equilibrium(SE)and constant strain rate(CSR)in Split Hopkinson pressure bar(SHPB)using pulse shaping technique[J].Construction and Building Materials,2017,144(6):747-757.
[15] ZHANG G H,ZHU Z,NING J,et al.Dynamic impact constitutive relation of 6008-T6 aluminum alloy based on dislocation density and secondphase particle strengthening effects[J].Journal of Alloy and Compounds,2023,932:167718.
[16] HOU X,LIU Z,WANG B,et al.Stress-strain curves and modified material constitutive model for Ti-6Al-4V over the wide ranges of strain rate and temperature[J].Materials,2018,11(6):938.
[17] LIU Y,CAI S L.Recrystallization-induced transition from brittle to ductile fracture in severe plastic deformed copper[J].Materials Science and Engineering:A,2019,755:116-127.
[18] KOPEC M,GORNIEWICZ D,Jó?WIAK S,et al.Microstructural evolution of 6061 aluminium alloy subjected to static and dynamic compression at low temperature[J].MRS Communications,2023,13:1244-1251.
[19] MA Q Y,HUANG K,MA D D.Energy absorption characteristics and theoretical analysis of frozen clay with pre-existing cracks under uniaxial compressive impact load[J].Cold Regions Science and Technology,2021,182:103206.
[20] GAO C Y,ZHANG L C.A constitutive model for dynamic plasticity of FCC metals[J].Materials Science and Engineering:A,2010,527(13-14):3138-3143.
基本信息:
DOI:
中图分类号:TG146.21
引用信息:
[1]潘志波,朱志武.低温冲击下2024-T351铝合金动态力学性能与能量演化[J].四川轻化工大学学报(自然科学版),2025,38(02):17-25.
基金信息:
四川省自然科学基金项目(2022NSFSC0420)